Set and Measure Theory Basics

$$\huge\textbf{Set and Measure Theory Basics} $$

1. Sequences, Sets, and Sequences of Sets

$def.$ supremum(ไธŠ็กฎ็•Œ) & infimum(ไธ‹็กฎ็•Œ)

Given a set $S \subseteq \mathbb R$ we define $$ \begin{align} &\sup S:=\inf \{u\mid \forall x \in S, x \leqslant u\}\\ &\inf S:=\sup \{\ell\mid \forall x \in S, x \geqslant \ell\} \end{align} $$

The well-ordering principle says that infimum and supremum always exist in $[โˆ’โˆž, โˆž]$. For example, $\inf[a, b] = \inf[a, b) = \inf(a, b) = \inf(a, b] = a, \sup(a, โˆž) = โˆž, \inf โˆ… = โˆž, \sup โˆ… = โˆ’โˆž, \inf โˆ… = โˆž$.
Given a sequence of real numbers $a_n$, $n โฉพ 1$, we say that $a_n โ†’ L$ or $lim_nโ†’โˆž a_n = L$ for some $L โˆˆ R$ $\text{iff}$

$$\forall ฮต > 0\quad\exists N = N(ฮต) \quad\text{s.t.} \quad\forall n โฉพ N, |a_n โˆ’ L| < ฮต. $$

We say that $a_n โ†’ โˆž$ $\text{iff}$

$$\forall M > 0 \quad\exists N = N(M) \quad\text{s.t.}\quad \forall n > N, a_n > M. $$

Note that an can diverge (ๅ‘ๆ•ฃ) without going to $ยฑโˆž$, e.g., by oscillating (้œ‡่ก). We also have the following result.

$\textbf{Theorem 1.1.}$ (Monotone Convergence Theorem โ€“ for real numbers)$\quad$ A bounded monotone sequence of real numbers has a limit. If the sequence is increasing, the limit is the supremum, and if the sequence is decreasing, the limit is the infimum of the sequence.

Given a sequence of real numbers $a_n$, $n โฉพ 1$, we define: $$ \begin{align} \limsup _{n \rightarrow \infty} a_{n}:=\lim _{m \rightarrow \infty} \sup _{n \geqslant m} a_{n}=\inf _{m \geqslant 1} \sup _{n \geqslant m} a_{n} \\ \liminf _{n \rightarrow \infty} a_{n}:=\lim _{m \rightarrow \infty} \inf _{n \geqslant m} a_{n}=\sup _{m \geqslant 1} \inf _{n \geqslant m} a_{n} \end{align} $$

Note that, $\lim a_n$ exists $\iff \lim \sup a_n = \lim \inf a_n$. We can extend the above definition to a sequence of sets. Given a sequence of sets $A_n โŠ† \mathbb R$, $n โฉพ 1$ we define

$$\begin{array}{l}\cup_{n \geqslant 1} A_{n}:=\left\{x: \exists n \text { s.t. } x \in A_{n}\right\}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup \cdots \\ \cap_{n \geqslant 1} A_{n}:=\left\{x: \forall n, x \in A_{n}\right\}=A_{1} \cap A_{2} \cap \cdots \cap A_{n} \cap \cdots .\end{array} $$

$\text{De Morgan}$โ€™s Laws say that:

$$\begin{array}{l}\left(\cup_{n \geqslant 1} A_{n}\right)^{c}=\cap_{n \geqslant 1} A_{n}^{c} \\ \left(\cap_{n \geqslant 1} A_{n}\right)^{c}=\cup_{n \geqslant 1} A_{n}^{c} .\end{array} $$
Given a sequence of sets $A_n$, $n โฉพ 1$, we now define: $$ \begin{aligned} \limsup _{n \rightarrow \infty} A_{n} & :=\bigcap_{m \geqslant 1} \bigcup_{n \geqslant m} A_{n} \\ \liminf _{n \rightarrow \infty} A_{n} & :=\bigcup_{m \geqslant 1} \bigcap_{n \geqslant m} A_{n} .\end{aligned} $$

Given a set $E$, we define the power set of $E$

$$2^E:=\{A\mid A\subseteq E\} $$

as the collection of all subsets of $E$. When $|E| < โˆž$, there is a one-to-one correspondence between subsets of $E$ and binary strings of length $|E|$, $i.e.$, $\{0, 1\}^E$. Note that, $E$ is finite $\iff$ there exists a bijection $f : E โ†’ \{1, 2, . . . , n\}$ for some non-negative integer $n$. Then we say that $|E| = n$ or $E$ has $n$ elements. Similarly, $E$ is countably infinite (ๅฏๅˆ—) $\iff$ there exists a bijection $f : E โ†’ \mathbb N := \{1, 2, . . .\}$. We say a set $E$ is countable if it is finite or countably infinite. For example, $\mathbb R$ is not countable but $\mathbb Q$ is countable. $2^{\mathbb N}$ is also not countable.

2. $ฯƒ$-algebras and partitions

$\textbf{Definition 1.2. }\sigma\textbf{-algebra}$ Given a set $E$, a $\sigma$-algebra $E$ on $E$ is a collection of subsets of $E$ such that $$ \left\{ \begin{aligned} & \emptyset \in \mathcal{E}\\ & A \in \mathcal{E} \Longrightarrow A^{c} \in \mathcal{E}\\ & \forall n\in \mathbb{N} :A_{n} \in \mathcal{E} \Longrightarrow \cup_{n \in \mathbb{N}} A_{n} \in \mathcal{E}\\ \end{aligned} \right. $$

The tuple $(E, \mathcal E)$ is called a measurable space. (that is the original set and its $\sigma$-algebra).

Actually, a measure on $X$ is a function that assigns a non-negative real number to subsets of $X$ this can be thought of as making precise a notion of โ€œsizeโ€ or โ€œvolumeโ€ for sets. We want the size of the union of disjoint sets to be the sum of their individual sizes, even for an infinite sequence of disjoint sets.


$\textbf{Definition 1.3. Coarse \& Fine}$ Given two $ฯƒ$-algebras $E_1 โŠ† E_2$ on E, we say that $E_1$ is coarser than $E_2$ and $E_2$ is finer than $E_1.$

Note that, $2^E$ is the biggest or finest $ฯƒ$-algebra on $E$ and $\{โˆ…, E\}$ is the smallest or coarsest $ฯƒ$-algebra on $E$, called the trivial $ฯƒ$-algebra.

$\textbf{Definition 1.4.}$ If $\mathcal A$ is a collection of subsets of $E$, $i.e.$, $\mathcal A โŠ† 2^E$, the $ฯƒ$-algebra generated by $\mathcal A$, written as $ฯƒ(\mathcal A)$, is the smallest or coarsest $ฯƒ$-algebra containing $\mathcal A$.

$\textbf{Definition 1.5. Partition}$ A partition $\Pi$ of $E$ is a collection of subsets of $E$, namely $\Pi = \{E_i\mid i โˆˆ I\}$ that is

(a) $\textbf{Exhaustive}$: $\cup_{i\in I}E_i = E$

(b) $\textbf{Exclusive}$: $i\not = j\implies E_i\cap E_j=\emptyset$


Partitions can be formed as equivalence classes based on equivalence relations and vice versa.
$\textbf{Definition 1.7. Equivalence Relation}$ An equivalence relation $\sim$ on $E$ is

(a) $\textbf{Reflective}$: $\forall x\in E:x\sim x$

(b) $\textbf{Symmetric}$: $x\sim y\implies y\sim x$

ยฉ $\textbf{Transitive}$: $x \sim y\land y \sim z \implies x \sim z$.


An **equivalence class** containing $x$ is $E_x := \{y โˆˆ E \mid x โˆผ y\}$. Note that, $\{E_x \mid x โˆˆ E\}$ gives a partition of $E$. Conversely, given a countable set $E$, any $ฯƒ$-algebra $\mathcal F$ on $E$ arises in the above way, $i.e.$, there exists a partition $\Pi$ on $E$ such that $\mathcal F = ฯƒ(\Pi)$. Define the relation $\sim$ on $\mathbb E$ as follows: $x โˆผ y$ if $(x โˆˆ A \iff \forall A โˆˆ \mathcal F: y โˆˆ A)$. $โˆผ$ is an equivalence relation. Let $\Pi := \{E_i\}_{iโˆˆI}$ be the disjoint equivalence classes $w.r.t.$ $โˆผ$ giving a partition of $\mathbb E$. One can prove that, $\mathcal F = ฯƒ(\Pi)$.

If $E$ is uncountable, then the above statement is not true